China factory 16 Way Pon Fiber Optic Plitter Fiber to Fiber Coupling nm couplimg

Product Description

Fiber Optic Splitter Product Name

16 way pon fiber optic plitter fiber to fiber coupling

Fiber Optic Splitter Description:

PLC-Planar Lightwave Circuit Splitter is a kind of power splitter based on the integrated quartz baseplate.
Single Mode PLC 1×N and 2×N Splitter divide uniformly optical signals from 1 or 2 inputs to multiple
outputs, and spliter can be operated in reverse direction to combine multiple signals into fiber or 2 fibers.

Fiber Optic Splitter Features:
Low Insertion loss
Low PDL
Compact Design
Good channel-to-channel uniformity
Wide Operating Wavelength: From 1260nm to 1650nm
Wide Operating Temperature:From -40ºC to 85ºC
High Reliability and Stability

Fiber Optic Splitter Applications 
FTTX Systems
PON Networks
CATV Links
Optical Signal Distribution

Fiber Optic Splitter Compliance 
Telcordia GR-1209-CORE
Telcordia GR-1221-CORE
RoHS
 
Fiber Optic Splitter Specifications

Table 1 – 1×N PLC Splitter
 

Parameters 1×2 1×4 1×8 1×16 1×32 1×64
Operating Wavelength (nm)     1260~1650    
Fiber Type     G657A or customer specified  
Insertion Loss (dB)(P/S Grade) 3.8/4.0 7.1/7.3 10.2/10.5 13.5/13.7 16.5/16.9 20.5/21.0
Loss Uniformity (dB) 0.4 0.6 0.8 1.2 1.5 2.0
Return Loss (dB) 55 55 55 55 55 55
Polarization Dependent Loss(dB) 0.2 0.2 0.2 0.25 0.3 0.35
Directivity (dB) 55 55 55 55 55 55
Wavelength Dependent Loss(dB) 0.3 0.3 0.3 0.5 0.5 0.5
Temperature Stability(-40~85 0.4 0.4 0.4 0.5 0.5 0.5
ºC)(dB)
           
Operating Temperature (ºC)     -40~85    
Storage Temperature (ºC)     -40~85    
Device Dimension (mm) 40×4×4 40×4×4 40×4×4 50×4×4 50×7×4 60×12×4
(L×W×H)
           
Module Dimension (mm) 100×80×10 100×80×10 100×80×10 120×80×18 140×115×18 140×115×18
(L×W×H)
           
Mini-Module Dimension (mm) 50×7×4 50×7×4 60×7×4 60×12×4 80×20×6 N/A
(L×W×H)
           
Table 2 – 2×N PLC Splitter            
Parameters 2×2 2×4 2×8 2×16 2×32 2×64
Operating Wavelength (nm)     1260~1650    
Fiber Type     G657A or customer specified  
Insertion Loss (dB) 4.0 7.6 11.0 14.4 17.5 21.0
Loss Uniformity (dB) 0.6 1.0 1.2 1.5 1.8 2.2
Return Loss (dB) 55 55 55 55 55 55
Polarization Dependent Loss(dB) 0.2 0.2 0.3 0.3 0.4 0.4
Directivity (dB) 55 55 55 55 55 55

 
Notes:
 
Specified without connectors.
Add an additional 0.15dB loss per connector.

FQA :

1. Q: Are you a manufacturer?
A: yes, we are a manufacturer , FTTH solution and data center total solution provider in HangZhou, China, established in 2000.

2. Q: What’s your MOQ?
A: MOQ can be 1 pcs, but the price is not competitive.More quantity,the price will be more competitive.

3. Q: Can you quote FOB price?
A: yes. We can delivery by air, DHL, TNT, UPC, FEDEX, etc. For big quantity we will deliver it by sea.

We can quote price with freight and lead time for you, after you let us know detailed requirements with quantity.

We have competitive shipping forwarders. For more solutions, you can feel free to contact us.

4. Q: How is your quality?
A: Our production is according to IEC, Europe standard. CE, ISO, RoHS, CPR, and ANATEL certified.

All the products are 100% test before delivery.

5. Q: What’s your lead time?
A: It depends on the quantity and products. For fiber optic patch cord, the lead time can be 2 -3 working days within 5000 pcs. We keep the regular products in stock. Also, we can deal with urgent orders.

6. Q: What’s your warranty?
A: Depends 1 different product, we have1 years warranty for patch cord since delivery, but only responsible for non-artificial damage. For artificial damage, we can repair it for you for free, freight will be paid by your side.

7. Q: What’s your packing?
A: International export standard package.If you need to print your logo on the packing, please let us know before we quote.

8. Q: Can you offer OEM/ODM?
A: yes, we can. all products accept OEM /ODM. we can CHINAMFG the Confidentiality Agreement.

9. Q: Can I have a sample?
A: It depends on which products, Free sample provide under 10 usd. Freight will be paid by buyer before delivery.

10. Q: How can I order?
A:1.send mail or inquiries with product name, specification, and quantity  to us . Provide your receive address if you need FOB,CIF,CFR price.

2.We will offer our quotation with lead time.

3.After the quotation confirmed, we will send a PI with our bank account.

4.Production will be arranged after the payment received.

5.Confirm the consignee with you before we deliver it.

6.The tracking number will be provided after the delivery.

11. Q: What your payment term?
A: T/T, Western Union, Paypal, MoneyGram at once. For big amounts, can be 50% deposit in advance, 50% balance paid before delivery.

Workshop:

Certificates:

ISO9001, ISO1400, CE, RoHS, CPR, ANATEL certified

Exhibitions:

OFC, CommunicAsia, ECOC, Netcom, SVIAZ ICT, AFRICACOM, CAIRO ICT, etc. 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Type: Fiber Optic Splitter&Coupler
Wiring Devices: ODF
Certification: CE, ISO, RoHS, GS
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

China factory 16 Way Pon Fiber Optic Plitter Fiber to Fiber Coupling  nm couplimg

nm coupling

How does a flexible coupling handle angular, parallel, and axial misalignment?

A flexible coupling is designed to accommodate various types of misalignment between two rotating shafts: angular misalignment, parallel misalignment, and axial misalignment. The flexibility of the coupling allows it to maintain a connection between the shafts while compensating for these misalignment types. Here’s how a flexible coupling handles each type of misalignment:

  • Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not collinear and form an angle with each other. Flexible couplings can handle angular misalignment by incorporating an element that can flex and bend. One common design is the “spider” or “jaw” element, which consists of elastomeric materials. As the shafts are misaligned, the elastomeric element can deform slightly, allowing the coupling to accommodate the angular offset between the shafts while still transmitting torque.
  • Parallel Misalignment: Parallel misalignment, also known as offset misalignment, occurs when the axes of the two shafts are parallel but not perfectly aligned with each other. Flexible couplings can handle parallel misalignment through the same elastomeric element. The flexible nature of the element enables it to shift and adjust to the offset between the shafts, ensuring continuous power transmission while minimizing additional stresses on the machinery.
  • Axial Misalignment: Axial misalignment, also called end-play misalignment, occurs when the two shafts move closer together or farther apart along their common axis. Flexible couplings can handle axial misalignment through specific designs that allow limited axial movement. For instance, some couplings use slotted holes or a floating member that permits axial displacement while maintaining the connection between the shafts.

By providing the capability to handle angular, parallel, and axial misalignment, flexible couplings offer several advantages for power transmission systems:

  • They help to prevent premature wear and damage to the connected equipment, reducing maintenance and replacement costs.
  • They minimize vibration and shock loads, enhancing the overall smoothness and reliability of the machinery.
  • They reduce the risk of equipment failure due to misalignment-induced stresses, improving the system’s operational life.
  • They allow for easier installation and alignment adjustments, saving time and effort during setup and maintenance.

Overall, flexible couplings play a crucial role in handling misalignment and ensuring efficient power transmission in various industrial applications.

nm coupling

How does a flexible coupling affect the noise and vibration levels in a mechanical system?

A flexible coupling plays a crucial role in controlling noise and vibration levels in a mechanical system. It can significantly impact the overall smoothness and quietness of the system’s operation, contributing to enhanced performance and reduced wear on connected components.

Noise Reduction:

Flexible couplings help reduce noise in a mechanical system through their inherent ability to dampen vibrations. When the shafts of rotating machinery are not perfectly aligned, it can lead to vibrations that are transmitted throughout the system, resulting in noise generation. The elastomeric or flexible element of the coupling acts as a vibration dampener, absorbing and dissipating these vibrations. As a result, the noise levels in the system are reduced, creating a quieter operating environment.

Vibration Damping:

Vibrations in a mechanical system can lead to increased wear and tear on critical components, such as bearings, seals, and gears. Excessive vibrations can also cause resonance and damage to the system over time. Flexible couplings can effectively dampen vibrations by acting as a buffer between the driving and driven shafts. The flexible element absorbs the shock and vibrations, preventing them from propagating to other parts of the system. This vibration damping capability not only reduces noise but also protects the system from potential mechanical failures, extending the lifespan of the equipment.

Alignment Compensation:

Misalignment between shafts is a common cause of vibration and noise in rotating machinery. Flexible couplings excel at compensating for both angular and parallel misalignment. By accommodating misalignment, the coupling reduces the forces acting on the shafts and minimizes the generation of vibrations and noise. Proper alignment through the use of a flexible coupling ensures that the system operates smoothly and quietly.

Effect on Equipment Reliability:

Reducing noise and vibration levels has a positive impact on the reliability of connected equipment. Lower vibrations mean less stress on bearings and other rotating components, leading to extended component life and reduced maintenance requirements. A quieter operating environment can also be essential for certain applications, such as in laboratories or precision manufacturing processes, where excessive noise can interfere with delicate tasks or measurements.

Applications:

Flexible couplings find application in a wide range of industries, such as manufacturing, power generation, material handling, automotive, aerospace, and robotics. They are commonly used in pumps, compressors, fans, conveyors, and other rotating machinery where noise and vibration control are critical for smooth and reliable operation.

Summary:

A flexible coupling’s ability to reduce noise and dampen vibrations makes it an essential component in mechanical systems. By compensating for misalignment and providing vibration dampening properties, the flexible coupling enhances the overall system performance, reduces noise levels, and protects connected equipment from excessive wear and mechanical failures. Choosing the right type of flexible coupling based on the specific application requirements can have a significant impact on noise reduction and vibration control in the mechanical system.

nm coupling

What is a flexible coupling and how does it work?

A flexible coupling is a mechanical device used to connect two shafts while allowing for relative movement between them. It is designed to transmit torque from one shaft to another while compensating for misalignment, vibration, and shock. Flexible couplings are essential components in various rotating machinery and systems, as they help protect the connected equipment and enhance overall performance.

Types of Flexible Couplings:

There are several types of flexible couplings, each with its unique design and characteristics. Some common types include:

  • Jaw Couplings: Jaw couplings feature elastomer spiders that fit between two hubs. They can accommodate angular and parallel misalignment while dampening vibrations.
  • Disc Couplings: Disc couplings use thin metallic discs to connect the shafts. They are highly flexible and provide excellent misalignment compensation.
  • Gear Couplings: Gear couplings use gear teeth to transmit torque. They offer high torque capacity and can handle moderate misalignment.
  • Beam Couplings: Beam couplings use a single piece of flexible material, such as a metal beam, to transmit torque while compensating for misalignment.
  • Bellows Couplings: Bellows couplings use a bellows-like structure to allow for axial, angular, and parallel misalignment compensation.
  • Oldham Couplings: Oldham couplings use three discs, with the middle one having a perpendicular slot to allow for misalignment compensation.

How a Flexible Coupling Works:

The operation of a flexible coupling depends on its specific design, but the general principles are similar. Let’s take the example of a jaw coupling to explain how a flexible coupling works:

  1. Two shafts are connected to the coupling hubs on either side, with an elastomer spider placed between them.
  2. When torque is applied to one shaft, it causes the spider to compress and deform slightly, transmitting the torque to the other shaft.
  3. In case of misalignment between the shafts, the elastomer spider flexes and compensates for the misalignment, ensuring smooth torque transmission without imposing excessive loads on the shafts or connected equipment.
  4. The elastomer spider also acts as a damping element, absorbing vibrations and shocks during operation, which reduces wear on the equipment and enhances system stability.

Overall, the flexibility and ability to compensate for misalignment are the key features that allow a flexible coupling to function effectively. The choice of a specific flexible coupling type depends on the application’s requirements, such as torque capacity, misalignment compensation, and environmental conditions.

China factory 16 Way Pon Fiber Optic Plitter Fiber to Fiber Coupling  nm couplimgChina factory 16 Way Pon Fiber Optic Plitter Fiber to Fiber Coupling  nm couplimg
editor by CX 2023-09-18